Việc ứng đáp câu hỏi nhị phân đối với mô hình đơn chiều Lý_thuyết_Ứng_đáp_Câu_hỏi

Chúng ta sẽ quy ước gọi một con người có thuộc tính cần đo lường là thí sinh (person -TS) và một đơn vị của công cụ để đo lường (test) là câu hỏi (item –CH). Để đơn giản hóa cho mô hình nghiên cứu xuất phát có thể đưa ra các giả thiết sau đây:

- Năng lực tiềm ẩn (latent trait) cần đo chỉ có một chiều (unidimensionality), hoặc ta chỉ đo một chiều của năng lực đó.

- Các CH là độc lập địa phương (local independence), tức là việc trả lời một CH không ảnh hưởng đến các CH khác.

Khi thỏa mãn hai giả thiết nêu trên thì không gian năng lực tiềm ẩn đầy đủ chỉ chứa một năng lực. Khi ấy, người ta giả định là có một hàm đặc trưng câu hỏi (Hàm ĐTCH - Item Characteristic Function) phản ánh mối quan hệ giữa các biến không quan sát được (năng lực của TS) và các biến quan sát được (việc trả lời CH). Đồ thị biểu diễn hàm đó được gọi là đường cong đặc trưng câu hỏi (Đường cong ĐTCH - Item Characteristic Curve).

Đối với các cặp TS – CH, cần xây dựng một cái thang chung để biểu diễn các mối tương tác giữa chúng. Trước hết giả sử ta có thể biểu diễn năng lực tiềm ẩn của các TS bằng một biến liên tục θ dọc theo một trục, từ –∞ đến +∞. Khi xét phân bố năng lực của một tập hợp TS nào đó, ta gán giá trị trung bình của phân bố năng lực của tập hợp TS đó bằng không (0), làm gốc của thang đo năng lực, và độ lệch tiêu chuẩn của phân bố năng lực bằng 1. Tiếp đến, chọn một thuộc tính của CH để đối sánh với năng lực: tham số biểu diễn thuộc tính quan trọng nhất đó là độ khó b của CH (cần lưu ý là đại lượng độ khó ở đây sẽ được xác định khác với trong CTT). Cũng theo cách tương tự có thể biểu diễn độ khó của các CH bằng một biến liên tục dọc theo một trục, từ –∞ đến +∞. Khi xét phân bố độ khó của một tập hợp CH nào đó, ta chọn giá trị trung bình của phân bố độ khó đó bằng không (0), làm gốc của thang đo độ khó, và độ lệch tiêu chuẩn của phân bố độ khó CH bằng 1.

Chúng ta sẽ bắt đầu bằng cách xây dựng một hàm đáp ứng CH cho một CH nhị phân, tức là CH mà câu trả lời chỉ có 2 mức: 0 (sai) và 1 (đúng). Giả thiết cơ bản sau đây của George Rasch, nhà toán học Đan Mạch, được đưa ra làm cơ sở để xây dựng mô hình hàm đáp ứng CH một tham số:

Một người có năng lực cao hơn một người khác thì xác suất để người đó trả lời đúng một câu hỏi bất kì phải lớn hơn xác suất của người sau; cũng tương tự như vậy, một câu hỏi khó hơn một câu hỏi khác có nghĩa là xác suất để một người bất kì trả lời đúng câu hỏi đó phải bé hơn xác suất để trả lời đúng câu hỏi sau (Rasch, 1960, tr. 117) [2].

Với giả thiết nêu trên, có thể thấy xác suất để một TS trả lời đúng một CH nào đó phụ thuộc vào tương quan giữa năng lực của TS và độ khó của CH. Chọn Θ để biểu diễn năng lực của TS, và β để biểu diễn độ khó của CH. Gọi P là xác suất trả lời đúng CH, xác suất đó sẽ phụ thuộc vào tương quan giữa Θ và β theo một cách nào đó, do vậy ta có thể biểu diễn:

f ( P ) = Θ β {\displaystyle f(P)={\frac {\Theta }{\beta }}} ( 1 ) {\displaystyle \qquad (1)}

trong đó f là một hàm nào đó của xác suất trả lời đúng.

Lấy logarit tự nhiên của (1):

ln ⁡ f ( P ) = ln ⁡ ( Θ β ) = ln ⁡ Θ − ln ⁡ β = ( θ − b ) {\displaystyle \ln {f(P)}=\ln({\frac {\Theta }{\beta }})=\ln {\Theta }-\ln {\beta }={(\theta -b)}} ( 2 ) {\displaystyle \qquad (2)}

Tiếp đến, để đơn giản, khi xét mô hình trắc nghiệm nhị phân, Rasch chọn hàm f chính là mức được thua (odds) O, hoặc khả năng thực hiện đúng (likelyhood ratio), tức O = P ( 1 − P ) {\displaystyle O={\frac {P}{(1-P)}}} , biểu diễn tỉ số của khả năng trả lời đúng và khả năng trả lời sai.

Như vậy:

ln ⁡ P ( 1 − P ) = θ − b {\displaystyle \ln {\frac {P}{(1-P)}}={\theta -b}} ( 3 ) {\displaystyle \qquad (3)} ,

ln ⁡ P ( 1 − P ) {\displaystyle \ln {\frac {P}{(1-P)}}} được gọi là logit (log odds unit).

Từ đó:

ln ⁡ P ( 1 − P ) = e ( θ − b ) {\displaystyle \ln {\frac {P}{(1-P)}}=e^{(\theta -b)}}

và:

P ( θ ) = e ( θ − b ) 1 + e ( θ − b ) {\displaystyle P(\theta )={\frac {e^{(\theta -b)}}{1+e^{(\theta -b)}}}} ( 4 ) {\displaystyle \qquad (4)}


Biểu thức (4) chính là hàm đặc trưng của mô hình ứng đáp CH 1 tham số, hay còn gọi là mô hình Rasch, có thể biểu diễn bằng đồ thị dưới đây (khi cho b = 0):

Hình 1. Đường cong ĐTCH một tham số

Tuy nhiên, như đã biết, trong CTT, người ta còn sử dụng một tham số quan trọng thứ hai đặc trưng cho CH là độ phân biệt, từ đó nhiều nhà nghiên cứu mong muốn đưa đặc trưng đó vào mô hình đường cong ĐTCH. Muốn vậy, có thể đưa thêm tham số a liên quan đến đặc trưng phân biệt của CH vào hệ số ở số mũ của hàm e, kết quả sẽ có biểu thức:

P ( θ ) = e a ( θ − b ) 1 + e a ( θ − b ) {\displaystyle P(\theta )={\frac {e^{a(\theta -b)}}{1+e^{a(\theta -b)}}}} ( 5 ) {\displaystyle \qquad (5)}

(5) chính là hàm ĐTCH 2 tham số. Hệ số a biểu diễn độ dốc của đường cong ĐTCH tại điểm có hoành độ θ= b và tung độ P(θ) = 0,5.

Hàm ĐTCH 2 tham số trình bày trên đây và hàm ĐTCH 1 tham số theo mô hình Rasch có cùng dạng thức, chỉ khác nhau ở giá trị tham số a (đối với mô hình 1 tham số a = 1). Hình 2 biểu diễn các đường cong ĐTCH theo mô hình 2 tham số với b=0, và a lần lượt bằng 0,5; 1,0; 1,5; 2,0; 3,0 nên độ dốc của các đường cong ở đoạn giữa tăng dần.

Hình 2. Các đường cong ĐTCH hai tham số với các giá trị a khác nhau (b = 0)

Có thể thấy rằng tung độ tiệm cận trái của các đường cong ĐTCH 1 và 2 tham số đều có giá trị bằng 0, điều đó có nghĩa là nếu TS có năng lực rất thấp, tức là Θ → 0 và θ = ln Θ → -∞, thì xác suất P(θ) trả lời đúng CH cũng bằng 0. Tuy nhiên, trong thực tế triển khai trắc nghiệm, chúng ta đều biết có khi năng lực của TS rất thấp nhưng do đoán mò hoặc trả lời hú hoạ một CH nên TS vẫn có một khả năng nào đó trả lời đúng CH. Trong trường hợp đã nêu thì tung độ tiệm cận trái của đường cong không phải bằng 0 mà bằng một giá trị xác định c nào đó, với 0 < c < 1. Từ thực tế nêu trên, người ta có thể đưa thêm tham số c phản ánh hiện tượng đoán mò vào hàm ứng đáp CH để tung độ tiệm cận trái của đường cong khác 0. Kết quả sẽ thu được biểu thức:

P ( θ ) = c + ( 1 − c ) e a ( θ − b ) 1 + e a ( θ − b ) {\displaystyle P(\theta )=c+(1-c){\frac {e^{a(\theta -b)}}{1+e^{a(\theta -b)}}}} ( 6 ) {\displaystyle \qquad (6)}

(6) chính là hàm ĐTCH 3 tham số. Rõ ràng khi θ → -∞, hàm P(θ)→ c. Trong trường hợp hàm ĐTCH 3 tham số khi θ = b sẽ có P(θ) = (1+c)/2.

Hình 3 biểu diễn các đường cong ĐTCH theo mô hình 3 tham số với a = 2 và các tham số c có giá trị bằng 0,1 và 0,2.

Hình 3: Các đường cong ĐTCH 3 tham số với a = 2, c = 0,1 và 0,2.

Mô hình đường cong ĐTCH 2 và 3 tham số do Allan Birnbaum đề xuất đầu tiên [4], nên đôi khi được gọi là các mô hình Birnbaum.